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Abstract. This study extends the analysis of the vibrational spectrum of the one-dimensional hexagonal
quasicrystal to the two-dimensional quasicrystal with the 12mm point group. Several thermodynamic
functions and the state equation of the material are shown.

PACS. 61.44.Br Quasicrystals – 62.30.+d Mechanical and elastic waves; vibrations –
65.50.+m Thermodynamic properties and entropy

The study of the vibrational spectrum of a quasicrys-
tal is an acknowledged problem. At present, there is a
lack of knowledge of the lattice vibrations for quasicrys-
tals, which leads to a fundamental difficulty in studying
their spectra. For this reason the Debye [1] hypothesis pre-
sented the approximation that a solid may be seen as an
elastic medium which can propagate elastic vibration to
describe approximately the lattice vibration. This treat-
ment is reasonable at least in the case of low temperatures
and longwave length. The Debye approximation for crys-
tals has been a considerable success and the theoretical
predications of his specific heat formula for crystals are in
excellent agreement with experimental results for a wide
temperature range. Fan [2] extended the Debye approx-
imation to study the energy distribution problem for a
one-dimensional hexagonal quasicrystal and gave a very
simple and quantitative description of the specific heat of
the quasicrystal.

In this paper we extend the model and the method
suggested by Fan [2] for a one-dimensional quasicrystal
to the two-dimensional quasicrystal case. It is well known
that the structure and elasticity of a two-dimensional qua-
sicrystal are considerably more complicated than those of
a one-dimensional quasicrystal. Up to now people have ob-
served four kinds of quasicrystals with five-fold, eight-fold,
ten-fold and twelve-fold symmetries, which are also called
as pentagonal, octagonal, decagonal and dodecagonal qua-
sicrystals respectively. Among them the elasticity of the
dodecagonal quasicrystal is the simplest. At first, the vi-
bration and wave propagation for the quasicrystal with a
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12mm point group symmetry were studied. Fortunately,
the elastic vibration equations for this two-dimensional
quasicrystal can be exactly reduced to some standard wave
equations, thus providing the opportunity to: (1) deter-
mine some exact thermal properties (under the longwave
length approximation), (2) to find some exact solutions
for the dislocation and crack dynamics for the dodecago-
nal quasicrystal and (3) to extend the description of dy-
namic equations to other two-dimensional quasicrystals,
etc. Here we discuss only for the first problem.

1 The generalized Debye model
for quasicrystals

We assume that a quasicrystal may be seen as a continu-
ous elastic medium with phonon and phason parameters,
which can propagate elastic vibration waves, and we take
the vibration of the medium to describe approximately
the lattice vibration of the quasicrystal. Meanwhile the
energy of lattice vibration of the solid is quantized, i.e.,
the energy distribution follows the Planck formula.

2 Vibration and wave propagation
in the two-dimensional dodecagonal
quasicrystal

The key step in employing the Debye approach to dis-
cuss the energy distribution of the quasicrystal lies in the
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description of vibration and wave propagation in the ma-
terial.

Consider a 12mm point group for a two-dimensional
quasicrystal, and (x1, x2, x3) stands for the rectilinear co-
ordinate system. Assume the atom arrangement along
the axis x3 is periodic, and the atom arrangement
along the x1 − x2 plane is quasiperiodic in the qua-
sicrystal. In this case, there are phonon displacement
components u1, u2, u3, and phason displacement compo-
nents w1, w2, and w3 = 0.

For simplicity of mathematical treatment, suppose
approximately that the field quantities are independent
from x3, i.e.

ui = ui(x1, x2, t) (i = 1, 2, 3),
wi = wi(x1, x2, t) (i = 1, 2) (1)

where x1, x2 are the spatial coordinates mentioned above,
and t the time.

Under the condition (1), the generalized Hooke’s
law for a two-dimensional dodecagonal quasicrystal with
twelve-fold symmetry, see e.g. Hu et al. [3] and Fan [4] is
as follows

σ11 = C12(ε11 + ε22) + (C11 − C12)ε11

σ22 = C12(ε11 + ε22) + (C11 − C12)ε22

σ12 = σ21 = (C11 − C12)ε12

σ13 = σ31 = 2C44ε13

σ23 = σ32 = 2C44ε23

H11 = K1w11 + K2w22

H22 = K1w22 + K2w11

H12 = (K1 + K2 + K3)w12 + K3w21

H21 = (K1 + K2 + K3)w21 + K3w12 (2)

in which σij denotes the stress tensors associated with the
phonon, Hij the stress tensor associated with the phason,
and εij and wij the strain tensors defined by

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, wij =

∂wi

∂xj
(3)

Cij the elastic constants of the phonon field, and Ki the
elastic constants of the phason field, respectively. For the
two-dimensional quasicrystal with twelve-fold symmetry,
the phonon and phason are decoupled, so the coupling
elastic constants Rij = 0.

The related equations of motion are

∂σ11

∂x1
+

∂σ12

∂x2
= ρ

∂2u1

∂t2
,

∂σ21

∂x1
+

∂σ22

∂x2
= ρ

∂2u2

∂t2
,

∂σ31

∂x1
+

∂σ32

∂x2
= ρ

∂2u3

∂t2
,

∂2H11

∂x1
+

∂H12

∂x2
= ρ

∂2w1

∂t2
∂2H21

∂x1
+

∂H22

∂x2
= ρ

∂2w2

∂t2

(4)

in which ρ represents the mass density of the material.
If we introduce the following displacement potentials

such as

u1 =
∂F

∂x1
+

∂G

∂x2
, u2 =

∂F

∂x2
− ∂G

∂x1

w1 =
∂P

∂x1
+

∂Q

∂x2
, w2 = − ∂P

∂x2
+

∂Q

∂x1
(5)

then the basic equations (2, 3, 4) are reduced to the fol-
lowing wave equations

∇2F =
1
c2
1

∂2F

∂t2
, ∇2G =

1
c2
2

∂2G

∂t2
, ∇2u3 =

1
c2
3

∂2u3

∂t2
,

∇2P =
1
d2
1

∂2P

∂t2
, ∇2Q =

1
d2
2

∂2Q

∂t2
, (6)

where ∇2 = ∂2/∂x2
1 + ∂2/∂x2

2 and

c1 =
√

C11/ρ, c2 =
√

(C11 − C12)/2ρ, c3 =
√

C44/ρ

d1 =
√

K1/ρ, d2 =
√

(K1 + K2 + K3)/ρ (7)

are wave speeds of the propagation of the vibration in the
quasicrystal.

The justification of the above procedure can be
confirmed via direct substitution, i.e., substituting (5)
into (3), then into (2) and then into (4), one finds that
the wave equations (6) must be satisfied.

If the phason field is absent, then Ki = 0, so d1 = d2 =
0, and if the medium is isotropic, we have

C11 = λ + 2µ,
C11 − C12

2
= µ, C44 = µ

in which λ and µ are the Lamé constants, and c1 and c2 =
c3 will be the speeds of the longitudinal and transverse
waves of the materials. Equations (6) will then be reduced
to the classical elastic wave equations.

Equations (6) give a macro-description of vibration
and wave propagation in the two-dimensional quasicrystal
with twelve-fold symmetry. The discovery of the last two
equations of (6) is a fortunate, similar to the case of the
one-dimensional hexagonal quasicrystal, see e.g. Fan [2,4].
Apart from these two cases, one cannot obtain the stan-
dard wave equations for other quasicrystal systems via
this simple approach. Due to the complexity of the elas-
ticity of quasicrystals, there is no possibility to find the
general and universal forms of the elastic wave equations
suitable for all other quasicrystals. But the present results
are significant in their ability to describe elastic vibra-
tion and wave propagation approximately for other two-
dimensional quasicrystals.

3 Partition function and state equation
of the dodecagonal quasicrystal

Denoting ν to be the atom vibration frequency and g(ν)
the frequency distribution function, then

g(ν)dν
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will be the number of simple harmonic vibrations be-
tween ν and ν + dν, and denoting N to be the number
of atoms then the total number of degrees of freedom is
given by

∫ ∞

0

g(ν)dν = 3N. (8)

Extending the model for the one-dimensional hexago-
nal quasicrystal given by Fan [2] to the two-dimensional
quasicrystal of 12mm point group symmetry, we have

g(ν)dν = Bν 2dν, (9)

with

B = 4πV

(
1
c3
1

+
1
c3
2

+
1
c3
3

+
1
d3
1

+
1
d3
2

)
, (10)

where V stands for the volume of the material, and c1, c2,
c3, d1 and d2 are defined by (7).

As a special case, where the phason field is absent,
so d1 and d2 and the vibrational components correspond-
ing to d1 and d2 do not exist and furthermore that the
material is isotropic, then C11 = λ + 2µ, C11 − C12 =
2µ, C44 = µ, and formula (10) reduces to the classical
Debye [1] formula, i.e.,

B = B′ ≡ 4πV

(
1
c3
1

+
2
c3
2

)
· (11)

This shows that the present result is in exact agreement
with that of the well-known Debye model in the classical
limit case.

Considering that the total number of degrees of free-
dom should be finite, there is a maximum frequency νD

(which is named as Debye frequency), i.e., (8) should be
rewritten as ∫ νD

0

g(ν)dν = 3N (12)

with (substituting (9) into (12))

ν3
D = 9N/B · (13)

Based on (9, 10) and the energy quantization assump-
tion, we can find the energy E due to the lattice vibration

E = E0 +
∑

∈̄(ν) = E0 +
∫ νD

0

∈̄(ν)g(ν)dν, (14)

with

∈̄(ν) =
hν

ehν/kT − 1
, (15)

and the partition function Φ

Ψ = lnΦ = −E0

kT
+

∫ νD

0

g(ν) ln
(

1
1 − e−hν/kT

)
dν (16)

for the quasicrystal, in which E0 is a constant, h and k are
Planck’s constant and Boltzman’s constant respectively, T
the absolute temperature and νD is given by (13) and (10)
(the mathematical details are omitted here).

From (14) one can obtain the specific heat of the mate-
rials, refer to Fan [2]. From (16) we find the state equation
of the solid

p = kT
∂Ψ

∂V
= −∂E0

∂V
− E − E0

Θ

∂Θ

∂V
(17)

in which p stands for the pressure and

Θ =
hνD

k
(18)

is understood to be the generalized Debye characteris-
tic temperature of a two-dimensional quasicrystal with
twelve-fold symmetry.

Denoting α as the expansion coefficient and as the
compression coefficient of the material

α =
1
V

(
∂V

∂T

)
p

, κ =
1
V

(
∂V

∂p

)
T

(19)

respectively, then one finds that

α

κ
=

(
∂p

∂T

)
V

= − 1
Θ

∂Θ

∂V

(
∂E

∂T

)
V

= − 1
Θ

∂Θ

∂V
cV (20)

where cV is the specific heat of the material given by cV =
(∂E/∂T )V in which E is defined by (14) with (9) and (10).
Equation (20) is the generalized Grueneisen law for the
quasicrystlal.
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